Extensions 1→N→G→Q→1 with N=C4 and Q=C32⋊C4

Direct product G=N×Q with N=C4 and Q=C32⋊C4
dρLabelID
C4×C32⋊C4244C4xC3^2:C4144,132

Semidirect products G=N:Q with N=C4 and Q=C32⋊C4
extensionφ:Q→Aut NdρLabelID
C4⋊(C32⋊C4) = C4⋊(C32⋊C4)φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C4244C4:(C3^2:C4)144,133

Non-split extensions G=N.Q with N=C4 and Q=C32⋊C4
extensionφ:Q→Aut NdρLabelID
C4.(C32⋊C4) = C32⋊M4(2)φ: C32⋊C4/C3⋊S3C2 ⊆ Aut C4244C4.(C3^2:C4)144,131
C4.2(C32⋊C4) = C322C16central extension (φ=1)484C4.2(C3^2:C4)144,51
C4.3(C32⋊C4) = C3⋊S33C8central extension (φ=1)244C4.3(C3^2:C4)144,130

׿
×
𝔽